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Let Q< RY be a bounded open set, w a weight-function, p>0, and a>0.
Assuming some regularity conditions on w and the boundary 622 of 2 we prove
that if grad w # 0 on the set I” where w vanishes and if I is transversal to 02 then
there exists a positive constant C such that for any polynomial P of degree at most
n we have |Pl, o< Cn* | P|w|*|, o; furthermore the exponent a of # is optimal.
€ 1994 Academic Press, Inc.

NOTATION

We denote by #, the set of algebraic polynomials of a single or several
variables (according to the context) of degree at most n. The set of
2z-periodic trigonometric polynomials of order at most » is denoted by H,,.

For EcRY, |- I, - is the usual norm (1<p< ) or pseudo-norm
(O<p<l1)onE

In this paper 2zn-periodic functions are considered as functions defined
on the (circle) K =R/2nZ; K is provided with the metric

di(x, y)=Min{|x—y+2k|; ke Z}.

For a 2n-periodic function f we define |[f)|¥ := [ f1, (0.2.3. The boundary
of a set 2= R" is denoted by Q.

In every statement and proof we use a collection C, C,, C,, ..., of positive
constants. Obviously, these constants have not the same meaning in
different occurences.

1. INTRODUCTION

In 1919 Schur [7] gave estimates that we can rewrite in the following
form: let pe 2, be a polynomial of a single variable and I=[ —1, 1]; then

1Pl S{n+ 1) [ xP] (H

167
0021-9045/94 $6.00

Copyright € 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



168 P. GOETGHELUCK

Furthermore using the classical Markov inequality, we get easily
1Pl <+ 1)* 11 =x)Pll. - (2)

More generally, let é,, 35, ¥4, ..., ¥, be positive constants, a,, ..., a, satisfying
laj <1 (i=1,..,r), a;#a;, (i#j), and p>0, «>0. We set w(x)=
I1—x|® |14+ x|% |x—a,|"|x—a,|” and k=Max{26,,28,, 7,7,
Then there exists a positive constant C such that for any Pe 2,

[P, < Cr™ | Pw?ll, 15 (3)

furthermore the exponent ko is sharp (see [1,5]). If for example
w(x)=|x—a| then k=1 if |Ja|<1 and k=2 if [a]=1. We see that the
exponent of » depends on the location of @ in I (interior or boundary).

The problem of proving inequalities similar to (1),(2), and (3)
(Nikolskii-type inequalities) in the N-dimensional case has been
investigated in [2] in the particular case of the uniform norm and a=1
(the interval 7 is then replaced by a bounded open set 2 = R”). Under the
assumptions that we C* (s large) and that 6 is C? in a neighborhood of
any aedQ n {x; w(x)=0} it was shown that

IPY .0 < Cr IPWIl 4, o,

where the optimal exponent d is effectively computable and depends only
on the geometric relations between the boundary of € and the set where
w vanishes.

An other related result was proved in [4]: let Q<= R”Y; if

(i) 2 preserves Markov’s inequality, that is, if for some positive
constants C; and r and for any pe 2,

1eP/Ox), o< Cin P, o  (i=1,.,N),

(ii) for some positive constant d and for any x € Q there exists 2 € NV
such that |a| < d and w™(x)#£0,

then, for some C,=C,(£2, w) and for any Pe %, we have
1Pl .0 < Con™ |1 Pw]l,, 4.

Let @ be a compact subset of RY whose boundary can be defined
in a neighborhood of any aedQ (using local coordinates) by x,=
f(x,, .., x,_,), where fis a Lipschitz function. It is known (see [3]) that
Q preserves the Markov inequality with exponent r = 2; then if grad w #0
(ie, d=1) we have

1Pl < Cn® [Pw], o
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The exponent 2 is optimal as shown by the following examples:

ExampLes. Let N=2, Q=[—-1,1]% w(x,y)=1—x, and P,(x,y)=
PZ%(x) be the sequence of Jacobi polynomials (see [8, Chap.4] for
notation); then

Cn? | Pyl o < 1Pall ,.o S Cn? [ Puwll -

An analogous example can be given with £ = the unit disc with center at
origin and w(x, y)=1—y.

We can remark in both examples proving sharpness of exponent 2 that
the set I'= {(x, y); w(x, y)=0} is tangential to the boundary 002 of Q.

In order to obtain a smaller optimal exponent, additional assumptions
are obviously needed. The previous examples suggest that I” should not be
tangential to 692

The purpose of this paper is to prove that if I' is transversal to 62 then
the previous results can be improved: the optimal exponent of n is 1.

2. STATEMENT OF THE RESULT

In order to make things clearer (and easier to write) we restrict the state-
ment of the theorem and its proof to the 2-dimensional case. The result can
be adapted to the N-dimensional case using heavier notation.

Assumptions. (i) < R?is an open bounded set.

(ii) wis a C'-function defined on a neighborhood of € and such
that "= {(x, y); w(x, y)=0} is a regular curve; that is: for any (x, y)e T,
grad w(x, y)#0.

(iii) The boundary 0Q of 2 is C? in a neighborhood of every
aedQnl.

(iv) I is transversal to 0Q; that is, d2nI#(F and for any
ae 02 n I, the tangent lines to 9€2 and I at a are distinct.

The aim of this paper is to prove the following

THEOREM. Let p>0, a>0. Under assumptions (i}, (ii), (ii1), and (iv},
there exists a positive constant C such that, for any Pe £,

[Pl ,.0<Cr* | P w|*]l, o

Furthermore, the exponent a of n is sharp.
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3. A PARTICULAR CASE

We first examine the case when € is the disc with radius R and center
at origin and I cuts transversally 622 at only two distinct points 4 and B.

3.1. Some Lemmas

LEMMA 1. Let 0,,0,eK satisfying d=d,(8,,8,)>0. Then, for any
O, €, we have |sin((8 —8,)/2)sin((§ —0,)/2)| = (d/n?) |0 — 0,| for either
e [0,—d/4,0,] or Be By, 0,+d/4].

Proof. We refer to Fig.1 and we give the proof when 6,<8,,
d=80,—8,, and 6,e[8,, (8, + 68,)/2]. (The proof is easily adapted to the
other cases.)

We denote by G (H resp.) the midpoint of 4B (BC resp.) and EF is a
segment parallel to 4B. We have length (£7)=d/4. The slope of AB is
s = (sin®(d/4))/(d/2) and since d<,

_ sin’(d/4) sin’(n/4)

Gy 8> @8) = din.

The segment EF whose slope is > d/n” lies under the graph of the function
x — [sin(( — 8,)/2) sin((0 — 6,)/2|. Then

|sin((0 — 6,)/2) sin((0 — 6,)/2)]
> (d/n?) |0 —0o] (0 [0,,00+d/4]).
jsin ((6-6,)/2) sin((6-6,)/2)]
s s
% 0 T—__ ©,+0 )2

NN

FiGURE 1

sin*(d/4)
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LEmMA 2. Let 6,,0,eK satisfying d=di(6,,0,)>0 and g(8)=
sin((6 — 6,)/2) sin((6 — 6,)/2). For any given p>0 and x>0 there exists a
positive constant C= C(p, o, d)} such that for any Te H,

1Ty < Cn* [T |gi*ll;.

Proof. It is not restrictive to assume that n>2/d. Let Te H, (n=2),
8, € K be such that | T|% =|T(8,)} and J,=[0,—1/2n, 6,4+ 1/2n]. If B J,
we have T(8)=T(0,)+(0—0,)T'(0') for some 0'eJ,. Then, since
IT(0") <n | T|% and |8 — 6] < 1/(2n),

IT(0) =3 | TI% (O Jp),

whence

Clp,a)yn= " |27
o+ 1/2n
<27 ATIE () [ 10— 6o db

6o

(we can use Lemma 1 since 1/(2r) < d/4)
<127 IT1% | 1g(8)7 db
Jo
<27 1712 | (207 dd
<[ 170N 15(6) db.

Therefore
/) I TIZP < Co(p,a) n™ || T gl 7. 4)

Let J,=[0,—1/n, 8,+1/n], Jo=[0,—1/n, 0.+ 1/n]. J,,=J UJ,, and
Jy=K\J,, (since 2/n < d we have J,nJ,= ). Now, using (4), we get

J., |T(0)17d0< 2/m) | TP < Ci(p, ) n™ T [ 77 (=1,2) (5)

and due to the fact that for fe J,

| ()] = sin(1/(2n)) sin(d/4) > C(d)/n,
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we get
L IT(0)7 db < C(d) n** | T | 817 7. (6)

Inequalities (5) and (6) together give the required result.
LEMMA 3. Let p>0 and a>0; there exists a positive constant
C=C(p, a) such that, for any x, € R and any Pe P,,

172 1
[ Peorrax<cms [ 1PEI7 x— x| dx,
- 1/2 1

jl |P(x)]? dx < Cn?* j' LP()]? |x — x,)7* dx.

1 —1

Proof. This is an immediate consequence of [S, Corollary 15, p. 114,
Corollary 26, p. 126; 1].

LEMMA 4. Let f be a function such that |f'(x)| =2m>0 for xe[ -1, 1].
Then for any p>0 and a> 0 there exists a positive constant C = C(p, o, m)
such that, for any Pe %,

1/2 1
[ 1P ax< o [ P07 101 dx,
-172

1

1
J 1P de<cn [ PG)I7 10017 d

Proof. Let x,e[—1,1] be such that |f(x,)|=Min, _,|f(x)|; then
| f(x)] = |x—x,|m, and applying Lemma 3 gives immediately the result.

3.2. Proof of the Theorem in the Particular Case
Let P(x,y)=Pe,.
1. We set

Q(r,0)= P(rcos 0, rsin 8), v(r, 8} = w(r cos 0, rsin 6).

The assumption that I” cuts transversally 602 at only two distinct points 4
and B implies that (0v/00)(4)#0 and (dv/00)(B)+#0. There exists a
neighborhood ¥, of A and a neigborhood V of B such that V N V=
and (0v/00)(x, y) #0 for (x, y)e VL V. Then one can find p e (0, r) and
d> 0 such that any circle with center at origin and radius re [R—p, R]
cuts I" (transversally) at only two points whose polar coordinates are
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(r,84(r)) and (r, B4(r)) with re [R—p, R] and dg(6,(r), B85(r))=d>0.
Thus we can write

o(r, 8)=sin((8 — 8 ,(r))/2) sin((6 — 05 (r))/2) u(r, 6)
(re[R—p, R],0eK),

where u is a continuous non-vanishing function satisfying |u(r, 8)| =2m >0
(re [R—p, R], 8eK) for some positive constant m. Using now Lemma 2,
we get

2n

2r
J, 10007 do<Cim | 10(,0)17 10(r, 0))7* 8 (re [R—p, R])

[

Then, multiplicating both sides by r and integrating with respect to r from
R—p to R yields

I Pl e < Cin® P W], £, (7)
where E is the annulus {(r, 8); 0e K, re [R—p, R]}.

2. Given a point Se I'n Q2 we can make a change of variable (trans-
lation + rotation) such that S becomes the origin and (since grad w #0)
(0w/dx)(0) # 0. Then we choose /> 0 such that

(1) o :={(x,p); x| <l |yl <l}=Q,
(2) for any (x, y)e o, [(dw/dx)(x, y)| =1 |(8w/dx)(0, 0)).

Let 0 := {(x, y); |x| <I/2, |y} <!} and f be the function defined for a given
y (Iyl <1) by f(x)=w(x,y). We have [f"(x) =] [(dw/0x)(0,0)] (|x] <1).
Then, for any ye [ —/, /] using Lemma 4 gives

1 12
| 1P 2)17 Dot I die> Com=2 [ 1P, ) i

Integrating both sides with respect to y from —/ to / yields
1Pl e < Csn®* [P W%, o (8)

3. Let Se Q\ I There exists a neighborhood # of S such that Z# < Q
and w(x, y) #0 ((x, y)e #). Then for some positive constant C,

1P, s <CsllPIW|?||, 2 <Csn” | Pwl?], 4. 9
By a compactness argument, we conclude from (7), (8), and (9) that

1Plp.0 < Cr* | P |w]*|l,, 0 (10)
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4. PrROOF OF THE THEOREM IN THE GENERAL CASE

1. Let AeI'nQ2; we have grad w(4)+#0. Thus, once can find an
open disc D with center at 4 and choose its radius in order that D < Q and
I' cuts transversally 2 at only two distinct points. If we use the
estimate (10) we see that there exists C; = C, (D) such that for any Pe &,

1Pl 0 < Cin* |2 W%l p-

2. Let Ae I'n0Q. The curve I cuts transversally 622 at A. Since dQ
is C? in a neighborhood of 4 we can choose a circle €

« whose interior D is included in €2,
« tangential to 02 at A,

« with radius r and center C,, r being small enough so that I cuts
transversally the circle € at only two points.

Again, estimate (10) implies that for any Pe Z,
[Pllp.0 <Con™ IP W[, p. (11)

Let D(A, n) be the disc with center at C, and radius r(1+ 1/n?). By the
well-known Bernstein—Walsh inequality [ 6, Lemma 3]

”P”p.[~lfn’z.l+n*2]<c3 ||P“p,[71,1]

(where C; does not depend on #n) is easily extended to the two-dimensional
case

”P“p,D(A,nJ<C4 ”P”p,D
and using (11) we have
WP, peam < Csn®* [P 1w, p. (12)

3. We remark (this is the crucial point) that ¢ being tangential to
0Q, dist(A, 2\ D(A, n)) = C¢/n for some positive constant C, and then one
can find N, and a finite covering of '~ @ by open discs D, .., Dy,
D(A,,n), D(A,, n), .., D(A4,, n) whose union V is such that for any n> N,
and any SeQ\V, dist(S, I')> C,;/n for some positive constant C, not
depending on n. Furthermore, estimates (11) and (12) yield

[Pl < Con® | P (W], - (13)

Now, since grad w(x, y)#0 ((x, y)e I'} there exists a positive constant
such that for any (x, y)e Q,

[w(x, y)I 2 Cy dist((x, y), I').
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Then if (x, y)e 2\ V we have |w(x, y)| = C,,/n and
1Pl , v S Cun 1P WP, g (14)
Estimates (13} and (14) together give

[ Pllp.o < Cr IIP W]l q

S. SHARPNESS OF THE EXPONENT

5.1. Some Lemmas

We need some preliminary estimates on Jacobi polynomials (see [8] for
notation). The Jacobi polynomial P!4® (whose degree is n) satisfies
(8, pp. 168-169]

| P9 cos §)] < n if 0<0<1/n (15)
Cn='29-4~172  if 1n<O<a/2 (16)
1 if n2<0<m (17)

LEMMA 5. For p>0, 020, and d>a+ 1/p, there exists a positive
constant C = C(p, o) such that for any n

(1P (1 —2x2) x|l p—1, 17 < Cn? 72717 (18)

Proof. We have

1
[ 1P O —26)7 [x|7 dx
i

1
=2 [ |PLOY(1 = 2x%)|7 |x| 7 dx
0
= I" | P49 (cos 0)|# |sin(6/2)]7* |cos(6/2)] db.
0
Using (15), (16), and (17) we obtain respectively

J.Un [P“%(cos 0)]7 |sin(6/2)]”* |cos(6/2)] d

0

1/n
<f n (02" df = C =7,

0

640/77:2-5



176 P. GOETGHELUCK

/2
f |P“9(cos 8)]” [sin(0/2)]”* |cos(6/2)| db
1/n
2
gcf (n 771/20~d~1/2)p szx dgsczndp—pa—l’
t/n

f" | P49 cos 0)]7 [sin(8/2)]* cos(8/2)] d6 < Cs.
n/2
These three estimates together give the required result.

LeMMA 6. Let p>0 and d>0. There exists a positive constant
C=C(p,d) such that for any n>0 we have

[ " PO —2x%)|P dx > Cn® .

—1/4
Proof. Let Q(x)=P!*(1 —2x*)and I=[—1,1]. We have

1@l .r=Q(0) = P{O(1) = .

By the Markov—Bernstein inequality, for any x e/,

1Q' (X)) <21 | Qll e, (1 —x%) 12
Then for |x| < 1/(4n)

1Q2(x) = 1121l .l = 1Q(x) — 0(0)] = x| Q'(c)

for some ¢ between 0 and x. Thus

1 1\ 12 2
IQ(X)—IIQH@J!SZ’;M(l—E) 12N . <3 NQ .

and then for |x| < 1/(4n), |Q(x)| =} 1Q]...,= in¥ therefore
1/4n
f 1Q(x)]” dx > Cné .
- 1/4n

CoROLLARY 1. Let p>0, d>1/p. There exists a positive constant
C = C(p) such that for any n we have

1/4n
j |PUO(] — 2x)|? dx < Cf
i

—1/4n

[PEO(] = 2x2)|? dx.
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Proof. Using (18) with « =0 we obtain
f |PEOY(1 —2x2)|7 dx < Cn# 1.
I

Then Corollary 1 is an immediate consequence of Lemma 6.

5.2. Proof of the Sharpness
Let aeQn /. We can assume that g is the origin and that
Qc[—1,17*=1I% Let N be such that [—1/N, 1/N]*< Q.
In order to prove the sharpness of the exponent «, we exhibit a sequence
(R4n),cn Of polynomials of degree 4n such that
na ”R4n 'W(x9 y)la”p,ﬂ < C "R‘in”p,ﬂ'

By Taylor's formula, w(x, y)=w(0,0)+ xw) (ix, iy)+ yw,(ix, iy) for
some Ae [0, 1]. Since w(0,0)=0 we have

[w(x, Y < C(1x]™ + 1 y*).

We set R,,(x, y)=Q(x) Q(»), where Q(x)= P*9(1 —2x?) with d>a+1/p.
We have

[, 1Ren( 917 e, )1 dix dy
<Gy [ 1xI7 10(x) QUy)I? dx dy
£C | 1917 10() Q)1 dx dy
<2, [ 1317 10001 dx | 10()1” dy

< Cyndo—pe 1 +dp—1 (by Lemma 5)

174
<Cyn P J.

— 1/4n

1/4n
|0 (1~ 2x7)] 7 dix | PO = 29" dy

/4n
(by Lemma 6 and Corollary 1) and since [ —1/4N, 1/4N]?c Q
[, 1Ran( 17 e, )7 i dy < Cn ™7 [ 1Ry (e, )17 e dy,

which completes the proof.
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