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Let Q c ~N be a bounded open set, IV a weight-function, p > 0, and rx > O.
Assuming some regularity conditions on IV and the boundary iJQ of Q we prove
that if grad IV ¢ 0 on the set r where IV vanishes and if r is transversal to iJQ then
there exists a positive constant C such that for any polynomial P of degree at most
n we have I/Pl/p.D ~ en' I/P Iwl"l/p.D; furthermore the exponent rx of n is optimal.
(~) 1994 Academic Press. Inc.

NOTATION

We denote by ~ the set of algebraic polynomials of a single or several
variables (according to the context) of degree at most n. The set of
2n-periodic trigonometric polynomials of order at most n is denoted by Hn

For Ec IR N
, 1I·llp ,E is the usual norm (1 ~p~ 00) or pseudo-norm

(O<p<l)onE.
In this paper 2n-periodic functions are considered as functions defined

on the (circle) II{ = 1R/2nZ; II{ is provided with the metric

dK (x,y)=Min{lx-y+2kl; kEZ}.

For a 2n-periodic function/we define IIf11;:= 11/ll p ,[O,2rr]' The boundary
of a set Dc IR N is denoted by aD.

In every statement and proof we use a collection C, C\, C2 , ... , of positive
constants. Obviously, these constants have not the same meaning in
different occurences.

1. INTRODUCTION

In 1919 Schur [7J gave estimates that we can rewrite in the following
form: let p E~ be a polynomial of a single variable and 1= [ -1, 1]; then

IIPII:xJ,l~ (n + 1) IlxPII x,I'
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Furthermore using the classical Markov inequality, we get easily

IIPII 00,1 ~ (n + I? 11(1- x)PII 00,1' (2)

More generally, let 15 1 , 15 2 , 1'1' ..., 1'r be positive constants, aI' .." ar satisfying
lail < 1 (i= 1, ..., r), ai=la} U=lj), and p>O, IX>O. We set w(x)=
II-xl b) 11 +xlb2Ix-aIIY) .. ·lx-arl)" and k= Max{215 1, 215 2 , 1'1' ..., 1'r}·
Then there exists a positive constant C such that for any P E 9 n

(3)

furthermore the exponent kIX is sharp (see [1,5]), If for example
w(x)= Ix-al then k= 1 if lal < 1 and k=2 if lal = 1. We see that the
exponent of n depends on the location of a in I (interior or boundary).

The problem of proving inequalities similar to (l), (2), and (3)
(Nikolskii-type inequalities) in the N-dimensional case has been
investigated in [2] in the particular case of the uniform norm and IX = 1
(the interval I is then replaced by a bounded open set Q c IR N

). Under the
assumptions that WEe (s large) and that oQ is C2 in a neighborhood of
any aEoQn {x; w(x)=O} it was shown that

IIPII w.Q ~ Cnd IIPwl1 oo,Q'

where the optimal exponent d is effectively computable and depends only
on the geometric relations between the boundary of Q and the set where
w vanishes.

An other related result was proved in [4]: let Q c (R.N; if

(i) Q preserves Markov's inequality, that is, if for some positive
constants C 1 and r and for any p E 9"

(i= 1, ... , N),

(ii) for some positive constant d and for any x E Q there exists iX E r\j"l

such that liXl ~ d and w(~)(x) =I 0,

then, for some C 2 = C 2 (Q, w) and for any PE9n we have

Let Q be a compact subset of IR N whose boundary can be defined
in a neighborhood of any a E (}Q (using local coordinates) by x n =
I( Xl' ..., X n _ 1), where I is a Lipschitz function. It is known (see [3]) that
Q preserves the Markov inequality with exponent r = 2; then if grad w =I 0
(i.e., d = 1) we have
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The exponent 2 is optimal as shown by the following examples:
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EXAMPLES. Let N=2, Q=[-1,1]2, w(x,y)=l-x, and Pn(x,y)=
p~2.0)(X) be the sequence of Jacobi polynomials (see [8, Chap. 4] for
notation); then

An analogous example can be given with Q = the unit disc with center at
origin and w(x, y) = 1- y.

We can remark in both examples proving sharpness of exponent 2 that
the set r = {(x, y); w(x, y) = O} is tangential to the boundary oQ of Q.

In order to obtain a smaller optimal exponent, additional assumptions
are obviously needed. The previous examples suggest that r should not be
tangential to oQ.

The purpose of this paper is to prove that if r is transversal to oQ then
the previous results can be improved: the optimal exponent of n is l.

2. STATEMENT OF THE RESULT

In order to make things clearer (and easier to write) we restrict the state
ment of the theorem and its proof to the 2-dimensional case. The result can
be adapted to the N-dimensional case using heavier notation.

Assumptions. (i) Q C 1R 2 is an open bounded set.

(ii) w is a C1-function defined on a neighborhood of Q and such
that r= {(x, y); w(x, y) = O} is a regular curve; that is: for any (x, y) E r,
grad w(x, y) ,= O.

(iii) The boundary oQ of Q is C2 in a neighborhood of every
aEoQn r.

(iv) r is transversal to oQ; that is, oQ n r,= 0 and for any
a E oQ n r, the tangent lines to oQ and r at a are distinct.

The aim of this paper is to prove the following

THEOREM. Let p>O, 0(>0. Under assumptions (i), (ii), (iii), and (iv),
there exists a positive constant C such that, for any P E ~,

Furthermore, the exponent CI. of n is sharp.
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3. A PARTICULAR CASE

We first examine the case when Q is the disc with radius R and center
at origin and r cuts transversally aD at only two distinct points A and B.

3.1. Some Lemmas

LEMMA 1. Let 81 , 82 E IK satisfying d = dK (e I> 82 ) > O. Then, for any
80 EIK, we have Isin((0-et>/2)sin((0-02)/2)1~(d/7T.2)10-Ool for either
eE [00-d/4, eo] or eE [eo, eo+d/4].

Proof We refer to Fig. 1 and we give the proof when 81 < 82 ,

d= O2- 01 , and eo E [0 1 , (OJ + (2)/2]. (The proof is easily adapted to the
other cases.)

We denote by G (H resp.) the midpoint of AB (Be resp.) and EF is a
segment parallel to AB. We have length (EI) = d/4. The slope of AB is
s= (sin 2(d/4»/(d/2) and since d~7T.,

The segment EF whose slope is ~ d/n 2 lies under the graph of the function
x -> Isin( (0 - () 1 )/2) sin( (() - ( 2 )/21. Then

Isin((e - 0 1)/2) sin((e - (2)/2)1

(OE [00, 00+d/4]).

E
9,a

J sin «9-9
1
)/2) sin«9-9)/2) I

DIe

L-t- (9
1
+9

2
)/2 9 2

d/4 '
,( )'

FIGURE 1
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LEMMA 2. Let 81,82 EIK satisfying d=dK (8 1 ,02»O and g(8)=
sin( (0 - 0 d/2) sin( (0 - ( 2)/2). For any given p > 0 and a> 0 there exists a
positive constant C = C(p, a, d) such that for any T E H n

Proof It is not restrictive to assume that n ~ 2/d. Let TE H n (n ~ 2),
80 E II{ be such that II TIl:: = IT(80 )1 and Jo= [Oo-1/2n, 00 + 1/2n].IfOEJo
we have T(8)=T(Oo)+(O-Oo)T'(O') for some O'EJo. Then, since
1T'(O')I";;'n IITlltc and 18-00 1 ";;'1/(2n),

jT(O)j ~ ~ IITlltc (OEJo),

whence

C(p, a) n -pa-l II TII~P

(we can use Lemma 1 since 1/(2n) < d/4)

,,;;, {l/2)P IITII~Pf Ig(OWa dO
Jo

";;'(1/2)P IITII~/t Ig(8)IP"dO

,,;;, t. IT(OW Ig(OW" dO.

Therefore

(4)

Let J I =[81-1/n, 01+I/n], J2=[02-I/n, 02+1/n]. Jl.2=J t uJ2, and
J 3 = II{ \Jl.2 (since 2/n < d we have J I n J2= 0). Now, using (4), we get

f IT(OW dO,,;;, (2/n) IITII~P";;'Cdp,a)npa IITlglall;P
J,

and due to the fact that for 0 E J 3

Ig(O)1 ~ sin( 1/(2n)) sin(d/4) ~ C(d)/n,

(i= 1,2) (5)
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we get
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f IT(ew de ~ C(d) nP~ II T Ign;p.
h

(6)

Inequalities (5) and (6) together give the required result.

LEMMA 3. Let p> 0 and r:J. > 0; there exists a positive constant
C= C(p, r:J.) such that, for any XI E IR and any PE&:"

Proof This is an immediate consequence of [5, Corollary 15, p. 114,
Corollary 26, p. 126; 1].

LEMMA 4. Let f be a function such that 1f'(x)1 ~ m > 0 for X E [ -1, 1].
Then for any p > 0 and r:J. > 0 there exists a positive constant C = C(p, r:J., m)
such that, for any P E &:,

{12 IP(x)IP dx ~ CnP' { IP(x)IP If(x)IP' dx,
-I~ -1

{ IP(x)IP dx ~ Cn 2p
, { IP(x)IP If(x)IP~ dx.

-I -I

Proof Let x I E[-I,l] be such that If(xdl=Min1x1<llf(x)l; then
If(x)1 ~ Ix-xllm, and applying Lemma 3 gives immediately the result.

3.2. Proof of the Theorem in the Particular Case

Let P(x, y) = PE&:,.

1. We set

Q(r, e) = P(r cos e, r sin e), v(r, e) = w(r cos e, r sin e).

The assumption that r cuts transversally aD at only two distinct points A
and B implies that (av;ae)(A);=O and (av;ae)(B);=O. There exists a
neighborhood VA of A and a neigborhood VB of B such that VA II VB= 0
and (av;aO)(x, y);= 0 for (x, y) EVA U VB' Then one can find p E (0, r) and
d> 0 such that any circle with center at origin and radius r E [R - p, R]
cuts r (transversally) at only two points whose polar coordinates are
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(r,8 A(r») and (r,8B(r» with rE[R-p,R] and dK(8A(r),8B(r))~d>0.

Thus we can write

v(r, 8) = sin«8 - 8A(r) )j2) sin( (8 - 8B(r) )j2) u(r, 8)

(rE [R - p, R], eElK),

where u is a continuous non-vanishing function satisfying lu(r, 8)1 ~ m > 0
(r E [R - p, R], 8E IK) for some positive constant m. Using now Lemma 2,
we get

(rE [R-p, R]).

(7)

Then, multiplicating both sides by r and integrating with respect to r from
R - P to R yields

II Pllp.E ~ C1n a liP Iwlallp,E'

where E is the annulus {(r, e); e ElK, r E [R - p, R]}.

2. Given a point S Ern Q we can make a change of variable (trans
lation + rotation) such that S becomes the origin and (since grad w # 0)
(owjox)(O) #0. Then we choose 1>0 such that

(1) d:={(x,y); Ixl<l, IYI</}cQ,

(2) for any (x, y) E d, I(owjox)(x, y)1 ~! I(owjox)(O, 0)1.

Let (9:= {(x,y); Ixl <lj2, Iyl <I} andfbe the function defined for a given
y (Iyl < I) by f(x) = w(x, y). We have If'(x)! ~! I(owjox)(O, 0)1 (Ixl < I).
Then, for any y E [ -I, I] using Lemma 4 gives

J
I J~IP(x, yW Iw(x, y)lpa dx~ C 2n-pa IP(x, yW dx.
-I -1/2

Integrating both sides with respect to y from -I to I yields

(8)

3. Let SEQ \ r. There exists a neighborhood fJl of S such that fJl c Q

and w(x,y)#O «X,Y)E.1J). Then for some positive constant C4

IIPllp,.>i' ~ C4 liP Iwlallp,.>i' ~ C4 naliP Iwlallp..>i"

By a compactness argument, we conclude from (7), (8), and (9) that

(9)

(10)
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4. PROOF OF THE THEOREM IN THE GENERAL CASE

1. Let A Ern Q; we have grad w(A) =I O. Thus, once can find an
open disc D with center at A and choose its radius in order that Dc Q and
r cuts transversally aQ at only two distinct points. If we use the
estimate (to) we see that there exists C 1 = C 1 (D) such that for any P E!JI:.

2. Let A Ern aQ. The curve r cuts transversally aQ at A. Since DQ
is C 2 in a neighborhood of A we can choose a circle ~

• whose interior D is included in Q,

• tangential to aQ at A,

• with radius r and center Co, r being small enough so that r cuts
transversally the circle f{j at only two points.

Again, estimate (10) implies that for any P E fl}n

(ll )

Let D(A, n) be the disc with center at Co and radius r(1 + Iln 2
). By the

well-known Bernstein-Walsh inequality [6, Lemma 3]

IIPllp.[-I-n-1.l +n- 2 ] ~ C3 1IPIIp,[-l.l]

(where C3 does not depend on n) is easily extended to the two-dimensional
case

and using (II) we have

(12)

3. We remark (this is the crucial point) that f{j being tangential to
aQ, dist(A, Q\D(A, n)) ~ C61n for some positive constant C6 and then one
can find No and a finite covering of r n Q by open discs D l, ... , D ko

D(A 1 , n), D(A 2 , n), ..., D(A" n) whose union V is such that for any n> No
and any SEQ \ V, dist(S, r) > C 7 In for some positive constant C7 not
depending on n. Furthermore, estimates (11) and (12) yield

(13)

Now, since grad w(x, y) =I 0 (x, y) E r) there exists a positive constant Cg

such that for any (x, y) E Q,

Iw(x, y)1 ~ Cg dist(x, y), r).
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Then if (X,Y)EQ\ V we have Iw(x,y)1 ~ ClOln and

I/Pl/p.D\V:::; C11n' liP IW!'I/P.D\V·

Estimates (13) and (14) together give

5. SHARPNESS OF THE EXPONENT

175

(14)

5.1. Some Lemmas

We need some preliminary estimates on Jacobi polynomials (see [8] for
notation). The Jacobi polynomial p~d.O) (whose degree is n) satisfies
[8,pp.168-169]

IP~d.O)(COS 0)1 :::;nd

Cn-l/20-d-l/2

if 0:::; 0:::; lin

if lin:::;. 0:::; n/2

if n/2:::; 0 :::; n.

(15)

(16)

(17)

LEMMA 5. For p>O, ex~O, and d>ex+ lip, there exists a positive
constant C = C(p, ex) such that for any n

(18)

Proof We have

r IP~d.O)(1-2x2W IxI P' dx
-1

= r IP~d.O)(cos OW Isin(0/2W' Icos(0/2)1 dO.
o

Using (15), (16), and (17) we obtain respectively

f
l/n

o IP~d.O)(cos OW Isin(0/2W' Icos(0/2)1 dO
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J
7</2

IP~d,O)(COS OW Isin(OI2W~ Icos(OI2)1 dO
lin

r IP~d,O)(cos OW Isin(OI2W~ Icos(OI2)1 dO:::;; C 3 ,
7</2

These three estimates together give the required result.

LEMMA 6, Let p > 0 and d> O. There exists a positive constant
C = C(p, d) such that for any n > 0 lre have

Proof Let Q(x) = p~d,O)( 1 - 2x2
) and 1= [ - 1, 1]. We have

By the Markov-Bernstein inequality, for any x E I,

Then for Ixl :::;; 1/(4n)

IQ(x) -IIQII cxc.) = IQ(x) - Q(O)I = Ixl Q'(c)

for some c between 0 and x. Thus

I ( 1 ) -1/2 2
IQ(x)-IIQlloo,/1 :::;;4n 2n 1-16 IIQlloo'/:::;;:JIIQlloo,/

and then for Ixl :::;; 1/(4n), IQ(x)1 ~ t IIQII 00.1= tn d
; therefore

J
I /4n

. IQ(x)jP dx~ Cn dp
-

1
,

·1;4n

COROLLARY 1. Let p > 0, d> lip. There exists a positive constant
C = C(p) such that for any n we have
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Proof Using (18) with IX = 0 we obtain
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Then Corollary 1 is an immediate consequence of Lemma 6.

5.2. Proof of the Sharpness

Let a E Q n r. We can assume that a is the ongm and that
Q c [ -1, 1]2 = /2. Let N be such that [ -liN, IIN]2 c Q.

In order to prove the sharpness of the exponent IX, we exhibit a sequence
(R 4n )neN of polynomials of degree 4n such that

ncr IIR4n Iw(x, Y)I"llp,Q ~ C IIR4n ll p,Q'

By Taylor's formula, w(x, y) = 11'(0, 0) + xw~(),x, AY) + yw~(h, J.y) for
some A. E [0, 1]. Since 11'(0,0) = 0 we have

Iw(x, Y)I"P ~ C 1(lxl"P + lyl"P).

We set R4n(x, y) = Q(x) Q(y), where Q(x) = p~d.O)( 1-2x2
) with d> IX+ lip.

We have

fa IR 4n (x, yW Iw(x, y)I"P dx dy

~ C 1 fa Ixl"P IQ(x) Q(yW dx dy

+ C. S lyl"P IQ(x) Q(yW dx dy
Q

~ 2C I I /xl"P IQ(xW dx I /Q(yW dy
I I

(by Lemma 5)

(by Lemma 6 and Corollary I) and since [ -1/4N, 1/4N] 2 c Q

which completes the proof.
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