On the Problem of Sharp Exponents in Multivariate Nikolskii-Type Inequalities

P. Goetgheluck
Université de Paris-sud, Département de Mathématiques, Bât. 425, 91405 Orsay Cedex, France
Communicated by Doron S. Lubinsky

Received March 31, 1992; accepted in revised form December 4, 1992

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded open set, w a weight-function, $p>0$, and $\alpha>0$. Assuming some regularity conditions on w and the boundary $\partial \Omega$ of Ω we prove that if grad $w \neq 0$ on the set Γ where w vanishes and if Γ is transversal to $\partial \Omega$ then there exists a positive constant C such that for any polynomial P of degree at most n we have $\|P\|_{p, \Omega} \leqslant C n^{x}\left\|P|w|^{\alpha}\right\|_{p, \Omega}$; furthermore the exponent α of n is optimal. © 1994 Academic Press, Inc.

Notation

We denote by \mathscr{P}_{n} the set of algebraic polynomials of a single or several variables (according to the context) of degree at most n. The set of 2π-periodic trigonometric polynomials of order at most n is denoted by H_{n}.

For $E \subset \mathbb{R}^{N},\|\cdot\|_{p, E}$ is the usual norm ($1 \leqslant p \leqslant \infty$) or pseudo-norm $(0<p<1)$ on E.

In this paper 2π-periodic functions are considered as functions defined on the (circle) $\mathbb{K}=\mathbb{R} / 2 \pi \mathbb{Z}$; \mathbb{K} is provided with the metric

$$
d_{K}(x, y)=\operatorname{Min}\{|x-y+2 k| ; k \in \mathbb{Z}\} .
$$

For a 2π-periodic function f we define $\|f\|_{p}^{*}:=\|f\|_{p,[0,2 \pi]}$. The boundary of a set $\Omega \subset \mathbb{R}^{N}$ is denoted by $\partial \Omega$.

In every statement and proof we use a collection C, C_{1}, C_{2}, \ldots, of positive constants. Obviously, these constants have not the same meaning in different occurences.

1. Introduction

In 1919 Schur [7] gave estimates that we can rewrite in the following form: let $p \in \mathscr{P}_{n}$ be a polynomial of a single variable and $I=[-1,1]$; then

$$
\begin{equation*}
\|P\|_{\infty, I} \leqslant(n+1)\|x P\|_{\infty, I} \tag{1}
\end{equation*}
$$

Furthermore using the classical Markov inequality, we get easily

$$
\begin{equation*}
\|P\|_{\infty, I} \leqslant(n+1)^{2}\|(1-x) P\|_{\infty, I} \tag{2}
\end{equation*}
$$

More generally, let $\delta_{1}, \delta_{2}, \gamma_{1}, \ldots, \gamma_{r}$ be positive constants, a_{1}, \ldots, a_{r} satisfying $\left|a_{i}\right|<1 \quad(i=1, \ldots, r), \quad a_{i} \neq a_{j} \quad(i \neq j)$, and $p>0, \alpha>0$. We set $w(x)=$ $|1-x|^{\delta_{1}}|1+x|^{\delta_{2}}\left|x-a_{1}\right|^{\gamma_{1}} \cdots\left|x-a_{r}\right|^{\gamma_{r}} \quad$ and $\quad k=\operatorname{Max}\left\{2 \delta_{1}, 2 \delta_{2}, \gamma_{1}, \ldots, \gamma_{r}\right\}$. Then there exists a positive constant C such that for any $P \in \mathscr{P}_{n}$

$$
\begin{equation*}
\|P\|_{p, I} \leqslant C n^{k x}\left\|P w^{\alpha}\right\|_{p, I} \tag{3}
\end{equation*}
$$

furthermore the exponent $k \alpha$ is sharp (see $[1,5]$). If for example $w(x)=|x-a|$ then $k=1$ if $|a|<1$ and $k=2$ if $|a|=1$. We see that the exponent of n depends on the location of a in I (interior or boundary).

The problem of proving inequalities similar to (1), (2), and (3) (Nikolskii-type inequalities) in the N-dimensional case has been investigated in [2] in the particular case of the uniform norm and $\alpha=1$ (the interval I is then replaced by a bounded open set $\Omega \subset \mathbb{R}^{N}$). Under the assumptions that $w \in C^{s}$ (s large) and that $\partial \Omega$ is C^{2} in a neighborhood of any $a \in \partial \Omega \cap\{x ; w(x)=0\}$ it was shown that

$$
\|P\|_{\infty, \Omega} \leqslant C n^{d}\|P w\|_{\infty, \Omega},
$$

where the optimal exponent d is effectively computable and depends only on the geometric relations between the boundary of Ω and the set where w vanishes.

An other related result was proved in [4]: let $\Omega \subset \mathbb{R}^{N}$; if
(i) Ω preserves Markov's inequality, that is, if for some positive constants C_{1} and r and for any $p \in \mathscr{P}_{n}$

$$
\left\|\partial P / \partial x_{i}\right\|_{p, \Omega} \leqslant C_{1} n^{r}\|P\|_{p, \Omega} \quad(i=1, \ldots, N)
$$

(ii) for some positive constant d and for any $x \in \bar{\Omega}$ there exists $\alpha \in \mathbb{N}^{N}$ such that $|\alpha| \leqslant d$ and $w^{(\alpha)}(x) \neq 0$,
then, for some $C_{2}=C_{2}(\Omega, w)$ and for any $P \in \mathscr{P}_{n}$ we have

$$
\|P\|_{p, \Omega} \leqslant C_{2} n^{r d}\|P w\|_{p, \Omega}
$$

Let $\bar{\Omega}$ be a compact subset of \mathbb{R}^{N} whose boundary can be defined in a neighborhood of any $a \in \partial \Omega$ (using local coordinates) by $x_{n}=$ $f\left(x_{1}, \ldots, x_{n-1}\right)$, where f is a Lipschitz function. It is known (see [3]) that $\bar{\Omega}$ preserves the Markov inequality with exponent $r=2$; then if $\operatorname{grad} w \neq 0$ (i.e., $d=1$) we have

$$
\|P\|_{p, \Omega} \leqslant C n^{2}\|P w\|_{\rho, \Omega} .
$$

The exponent 2 is optimal as shown by the following examples:
Examples. Let $N=2, \Omega=[-1,1]^{2}, w(x, y)=1-x$, and $P_{n}(x, y)=$ $P_{n}^{(2,0)}(x)$ be the sequence of Jacobi polynomials (see [8, Chap. 4] for notation); then

$$
C^{\prime} n^{2}\left\|P_{n} w\right\|_{p, \Omega} \leqslant\left\|P_{n}\right\|_{p, \Omega} \leqslant C n^{2}\left\|P_{n} w\right\|_{p, \Omega} .
$$

An analogous example can be given with $\Omega=$ the unit disc with center at origin and $w(x, y)=1-y$.

We can remark in both examples proving sharpness of exponent 2 that the set $\Gamma=\{(x, y) ; w(x, y)=0\}$ is tangential to the boundary $\partial \Omega$ of Ω.

In order to obtain a smaller optimal exponent, additional assumptions are obviously needed. The previous examples suggest that Γ should not be tangential to $\partial \Omega$.

The purpose of this paper is to prove that if Γ is transversal to $\partial \Omega$ then the previous results can be improved: the optimal exponent of n is 1 .

2. Statement of the Result

In order to make things clearer (and easier to write) we restrict the statement of the theorem and its proof to the 2-dimensional case. The result can be adapted to the N-dimensional case using heavier notation.
Assumptions. (i) $\Omega \subset \mathbb{R}^{2}$ is an open bounded set.
(ii) w is a C^{1}-function defined on a neighborhood of $\bar{\Omega}$ and such that $\Gamma=\{(x, y) ; w(x, y)=0\}$ is a regular curve; that is: for any $(x, y) \in \Gamma$, $\operatorname{grad} w(x, y) \neq 0$.
(iii) The boundary $\partial \Omega$ of Ω is C^{2} in a neighborhood of every $a \in \partial \Omega \cap \Gamma$.
(iv) Γ is transversal to $\partial \Omega$; that is, $\partial \Omega \cap \Gamma \neq \varnothing$ and for any $a \in \partial \Omega \cap \Gamma$, the tangent lines to $\partial \Omega$ and Γ at a are distinct.

The aim of this paper is to prove the following
Theorem. Let $p>0, \alpha>0$. Under assumptions (i), (ii), (iii), and (iv), there exists a positive constant C such that, for any $P \in \mathscr{P}_{n}$,

$$
\|P\|_{P, \Omega} \leqslant C n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, \Omega} .
$$

Furthermore, the exponent α of n is sharp.

3. A Particular Case

We first examine the case when Ω is the disc with radius R and center at origin and Γ cuts transversally $\partial \Omega$ at only two distinct points A and B.

3.1. Some Lemmas

Lemma 1. Let $\theta_{1}, \theta_{2} \in \mathbb{K}$ satisfying $d=d_{K}\left(\theta_{1}, \theta_{2}\right)>0$. Then, for any $\theta_{0} \in \mathbb{K}$, we have $\left|\sin \left(\left(\theta-\theta_{1}\right) / 2\right) \sin \left(\left(\theta-\theta_{2}\right) / 2\right)\right| \geqslant\left(d / \pi^{2}\right)\left|\theta-\theta_{0}\right|$ for either $\theta \in\left[\theta_{0}-d / 4, \theta_{0}\right]$ or $\theta \in\left[\theta_{0}, \theta_{0}+d / 4\right]$.

Proof. We refer to Fig. 1 and we give the proof when $\theta_{1}<\theta_{2}$, $d=\theta_{2}-\theta_{1}$, and $\theta_{0} \in\left[\theta_{1},\left(\theta_{1}+\theta_{2}\right) / 2\right]$. (The proof is easily adapted to the other cases.)

We denote by G (H resp.) the midpoint of $A B$ ($B C$ resp.) and $E F$ is a segment parallel to $A B$. We have length $(E I)=d / 4$. The slope of $A B$ is $s=\left(\sin ^{2}(d / 4)\right) /(d / 2)$ and since $d \leqslant \pi$,

$$
s=\frac{\sin ^{2}(d / 4)}{(d / 4)^{2}}(d / 8) \geqslant \frac{\sin ^{2}(\pi / 4)}{(\pi / 4)^{2}}(d / 8)=d / \pi^{2}
$$

The segment $E F$ whose slope is $\geqslant d / \pi^{2}$ lies under the graph of the function $x \rightarrow \mid \sin \left(\left(\theta-\theta_{1}\right) / 2\right) \sin \left(\left(\theta-\theta_{2}\right) / 2 \mid\right.$. Then

$$
\begin{aligned}
& \left|\sin \left(\left(\theta-\theta_{1}\right) / 2\right) \sin \left(\left(\theta-\theta_{2}\right) / 2\right)\right| \\
& \quad \geqslant\left(d / \pi^{2}\right)\left|\theta-\theta_{0}\right| \quad\left(\theta \in\left[\theta_{0}, \theta_{0}+d / 4\right]\right)
\end{aligned}
$$

$$
\left|\sin \left(\left(\theta-\theta_{1}\right) / 2\right) \sin \left(\left(\theta-\theta_{2}\right) / 2\right)\right|
$$

Figure 1

Lemma 2. Let $\theta_{1}, \theta_{2} \in \mathbb{K}$ satisfying $d=d_{K}\left(\theta_{1}, \theta_{2}\right)>0$ and $g(\theta)=$ $\sin \left(\left(\theta-\theta_{1}\right) / 2\right) \sin \left(\left(\theta-\theta_{2}\right) / 2\right)$. For any given $p>0$ and $\alpha>0$ there exists a positive constant $C=C(p, \alpha, d)$ such that for any $T \in H_{n}$

$$
\|T\|_{p}^{*} \leqslant C n^{\alpha}\left\|T|g|^{\alpha}\right\|_{p}^{*}
$$

Proof. It is not restrictive to assume that $n \geqslant 2 / d$. Let $T \in H_{n}(n \geqslant 2)$, $\theta_{0} \in \mathbb{K}$ be such that $\|T\|_{\infty}^{*}=\left|T\left(\theta_{0}\right)\right|$ and $J_{0}=\left[\theta_{0}-1 / 2 n, \theta_{0}+1 / 2 n\right]$. If $\theta \in J_{0}$ we have $T(\theta)=T\left(\theta_{0}\right)+\left(\theta-\theta_{0}\right) T^{\prime}\left(\theta^{\prime}\right)$ for some $\theta^{\prime} \in J_{0}$. Then, since $\left|T^{\prime}\left(\theta^{\prime}\right)\right| \leqslant n\|T\|_{\infty}^{*}$ and $\left|\theta-\theta_{0}\right| \leqslant 1 /(2 n)$,

$$
|T(\theta)| \geqslant \frac{1}{2}\|T\|_{\infty}^{*}\left(\theta \in J_{0}\right)
$$

whence

$$
\begin{aligned}
& C(p, \alpha) n^{-p \alpha-1}\|T\|_{\infty}^{* p} \\
& \quad \leqslant(1 / 2)^{p}\|T\|_{\infty}^{* p}\left(d / \pi^{2}\right)^{p \alpha} \int_{\theta_{0}}^{\theta_{0}+1 / 2 n}\left|\theta-\theta_{0}\right|^{p \alpha} d \theta
\end{aligned}
$$

(we can use Lemma 1 since $1 /(2 n)<d / 4$)

$$
\begin{aligned}
& \leqslant(1 / 2)^{p}\|T\|_{\infty}^{* p} \int_{J_{0}}|g(\theta)|^{p x} d \theta \\
& \leqslant(1 / 2)^{p}\|T\|_{\infty}^{* p} \int_{K}|g(\theta)|^{p x} d \theta \\
& \leqslant \int_{K}|T(\theta)|^{p}|g(\theta)|^{p x} d \theta
\end{aligned}
$$

Therefore

$$
\begin{equation*}
(2 / n)\|T\|_{\infty}^{* p} \leqslant C_{1}(p, \alpha) n^{p \alpha}\left\|T|g|^{\alpha}\right\|_{p}^{* p} . \tag{4}
\end{equation*}
$$

Let $J_{1}=\left[\theta_{1}-1 / n, \theta_{1}+1 / n\right], J_{2}=\left[\theta_{2}-1 / n, \theta_{2}+1 / n\right] . J_{1,2}=J_{1} \cup J_{2}$, and $J_{3}=\mathbb{K} \backslash J_{1,2}$ (since $2 / n<d$ we have $J_{1} \cap J_{2}=\varnothing$). Now, using (4), we get

$$
\begin{equation*}
\int_{J_{i}}|T(\theta)|^{p} d \theta \leqslant(2 / n)\|T\|_{\infty}^{* p} \leqslant C_{1}(p, \alpha) n^{p \alpha}\left\|T|g|^{\alpha}\right\|_{p}^{* p} \quad(\mathrm{i}=1,2) \tag{5}
\end{equation*}
$$

and due to the fact that for $\theta \in J_{3}$

$$
|g(\theta)| \geqslant \sin (1 /(2 n)) \sin (d / 4) \geqslant C(d) / n
$$

we get

$$
\begin{equation*}
\int_{J_{3}}|T(\theta)|^{p} d \theta \leqslant C(d) n^{p x}\left\|T|g|^{\alpha}\right\|_{p}^{* p} . \tag{6}
\end{equation*}
$$

Inequalities (5) and (6) together give the required result.
Lemma 3. Let $p>0$ and $\alpha>0$; there exists a positive constant $C=C(p, \alpha)$ such that, for any $x_{1} \in \mathbb{R}$ and any $P \in \mathscr{P}_{n}$,

$$
\begin{aligned}
& \int_{-1 / 2}^{1 / 2}|P(x)|^{p} d x \leqslant C n^{p \alpha} \int_{-1}^{1}|P(x)|^{p}\left|x-x_{1}\right|^{p \alpha} d x \\
& \int_{-1}^{1}|P(x)|^{p} d x \leqslant C n^{2 p x} \int_{-1}^{1}|P(x)|^{p}\left|x-x_{1}\right|^{p x} d x
\end{aligned}
$$

Proof. This is an immediate consequence of [5, Corollary 15, p. 114, Corollary 26, p. 126; 1].

Lemma 4. Let f be a function such that $\left|f^{\prime}(x)\right| \geqslant m>0$ for $x \in[-1,1]$. Then for any $p>0$ and $\alpha>0$ there exists a positive constant $C=C(p, \alpha, m)$ such that, for any $P \in \mathscr{P}_{n}$

$$
\begin{aligned}
& \int_{-1 / 2}^{1 / 2}|P(x)|^{p} d x \leqslant C n^{p x} \int_{-1}^{1}|P(x)|^{p}|f(x)|^{p x} d x \\
& \int_{-1}^{1}|P(x)|^{p} d x \leqslant C n^{2 p x} \int_{-1}^{1}|P(x)|^{p}|f(x)|^{p x} d x .
\end{aligned}
$$

Proof. Let $x_{1} \in[-1,1]$ be such that $\left|f\left(x_{1}\right)\right|=\operatorname{Min}_{|x|<1}|f(x)|$; then $|f(x)| \geqslant\left|x-x_{1}\right| m$, and applying Lemma 3 gives immediately the result.

3.2. Proof of the Theorem in the Particular Case

Let $P(x, y)=P \in \mathscr{P}_{n}$.

1. We set

$$
Q(r, \theta)=P(r \cos \theta, r \sin \theta), \quad v(r, \theta)=w(r \cos \theta, r \sin \theta)
$$

The assumption that Γ cuts transversally $\partial \Omega$ at only two distinct points A and B implies that $(\partial v / \partial \theta)(A) \neq 0$ and $(\partial v / \partial \theta)(B) \neq 0$. There exists a neighborhood V_{A} of A and a neigborhood V_{B} of B such that $V_{A} \cap V_{B}=\varnothing$ and $(\partial v / \partial \theta)(x, y) \neq 0$ for $(x, y) \in V_{A} \cup V_{B}$. Then one can find $\rho \in(0, r)$ and $d>0$ such that any circle with center at origin and radius $r \in[R-\rho, R]$ cuts Γ (transversally) at only two points whose polar coordinates are
$\left(r, \theta_{A}(r)\right)$ and $\left(r, \theta_{B}(r)\right)$ with $r \in[R-\rho, R]$ and $d_{K}\left(\theta_{A}(r), \theta_{B}(r)\right) \geqslant d>0$. Thus we can write

$$
\begin{gathered}
v(r, \theta)=\sin \left(\left(\theta-\theta_{A}(r)\right) / 2\right) \sin \left(\left(\theta-\theta_{B}(r)\right) / 2\right) u(r, \theta) \\
(r \in[R-\rho, R], \theta \in \mathbb{K}),
\end{gathered}
$$

where u is a continuous non-vanishing function satisfying $|u(r, \theta)| \geqslant m>0$ ($r \in[R-\rho, R], \theta \in \mathbb{K}$) for some positive constant m. Using now Lemma 2, we get

$$
\int_{0}^{2 \pi}|Q(r, \theta)|^{p} d \theta \leqslant C_{1} n^{p \alpha} \int_{0}^{2 \pi}|Q(r, \theta)|^{p}|v(r, \theta)|^{p \alpha} d \theta \quad(r \in[R-\rho, R])
$$

Then, multiplicating both sides by r and integrating with respect to r from $R-\rho$ to R yields

$$
\begin{equation*}
\|P\|_{p, E} \leqslant C_{1} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, E} \tag{7}
\end{equation*}
$$

where E is the annulus $\{(r, \theta) ; \theta \in \mathbb{K}, r \in[R-\rho, R]\}$.
2. Given a point $S \in \Gamma \cap \Omega$ we can make a change of variable (translation + rotation) such that S becomes the origin and (since grad $w \neq 0$) $(\partial w / \partial x)(0) \neq 0$. Then we choose $l>0$ such that
(1) $\mathscr{A}:=\{(x, y) ;|x|<l,|y|<l\} \subset \Omega$,
(2) for any $(x, y) \in \mathscr{A},|(\partial w / \partial x)(x, y)| \geqslant \frac{1}{2}|(\partial w / \partial x)(0,0)|$.

Let $\mathcal{O}:=\{(x, y) ;|x|<l / 2,|y|<l\}$ and f be the function defined for a given $y(|y|<l)$ by $f(x)=w(x, y)$. We have $\left|f^{\prime}(x)\right| \geqslant \frac{1}{2}|(\partial w / \partial x)(0,0)|(|x|<l)$. Then, for any $y \in[-l, l]$ using Lemma 4 gives

$$
\int_{-1}^{l}|P(x, y)|^{p}|w(x, y)|^{p x} d x \geqslant C_{2} n^{-p \alpha} \int_{-1 / 2}^{l / 2}|P(x, y)|^{p} d x
$$

Integrating both sides with respect to y from $-l$ to l yields

$$
\begin{equation*}
\|P\|_{p, \mathbb{C}} \leqslant C_{3} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, \alpha \mathscr{A}} \tag{8}
\end{equation*}
$$

3. Let $S \in \Omega \backslash \Gamma$. There exists a neighborhood \mathscr{B} of S such that $\mathscr{B} \subset \Omega$ and $w(x, y) \neq 0((x, y) \in \mathscr{B})$. Then for some positive constant C_{4}

$$
\begin{equation*}
\|P\|_{p, \mathscr{w}} \leqslant C_{4}\left\|P|w|^{\alpha}\right\|_{p, \infty} \leqslant C_{4} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, s} . \tag{9}
\end{equation*}
$$

By a compactness argument, we conclude from (7), (8), and (9) that

$$
\begin{equation*}
\|P\|_{p, \Omega} \leqslant C n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, \Omega} . \tag{10}
\end{equation*}
$$

4. Proof of the Theorem in the General Case

1. Let $A \in \Gamma \cap \Omega$; we have $\operatorname{grad} w(A) \neq 0$. Thus, once can find an open disc D with center at A and choose its radius in order that $D \subset \Omega$ and Γ cuts transversally $\partial \Omega$ at only two distinct points. If we use the estimate (10) we see that there exists $C_{1}=C_{1}(D)$ such that for any $P \in \mathscr{P}_{n}$

$$
\|P\|_{p, D} \leqslant C_{1} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, D} .
$$

2. Let $A \in \Gamma \cap \partial \Omega$. The curve Γ cuts transversally $\partial \Omega$ at A. Since $\partial \Omega$ is C^{2} in a neighborhood of A we can choose a circle \mathscr{C}

- whose interior D is included in Ω,
- tangential to $\partial \Omega$ at A,
- with radius r and center C_{0}, r being small enough so that Γ cuts transversally the circle \mathscr{G} at only two points.
Again, estimate (10) implies that for any $P \in \mathscr{P}_{n}$

$$
\begin{equation*}
\|P\|_{p, D} \leqslant C_{2} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, D} . \tag{11}
\end{equation*}
$$

Let $D(A, n)$ be the disc with center at C_{0} and radius $r\left(1+1 / n^{2}\right)$. By the well-known Bernstein-Walsh inequality [6, Lemma 3]

$$
\|P\|_{p,\left[-1-n^{-2}, 1+n^{-2}\right]} \leqslant C_{3}\|P\|_{p,[-1,1]}
$$

(where C_{3} does not depend on n) is easily extended to the two-dimensional case

$$
\|P\|_{p, D(A, n)} \leqslant C_{4}\|P\|_{p, D}
$$

and using (11) we have

$$
\begin{equation*}
\|P\|_{p, D(A, n)} \leqslant C_{5} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, D} . \tag{12}
\end{equation*}
$$

3. We remark (this is the crucial point) that \mathscr{C} being tangential to $\partial \Omega, \operatorname{dist}(A, \Omega \backslash D(A, n)) \geqslant C_{6} / n$ for some positive constant C_{6} and then one can find N_{0} and a finite covering of $\Gamma \cap \bar{\Omega}$ by open discs D_{1}, \ldots, D_{k}, $D\left(A_{1}, n\right), D\left(A_{2}, n\right), \ldots, D\left(A_{r}, n\right)$ whose union V is such that for any $n>N_{0}$ and any $S \in \Omega \backslash V$, $\operatorname{dist}(S, \Gamma)>C_{7} / n$ for some positive constant C_{7} not depending on n. Furthermore, estimates (11) and (12) yield

$$
\begin{equation*}
\|P\|_{p, V} \leqslant C_{8} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, V} . \tag{13}
\end{equation*}
$$

Now, since $\operatorname{grad} w(x, y) \neq 0((x, y) \in \Gamma)$ there exists a positive constant C_{9} such that for any $(x, y) \in \Omega$,

$$
|w(x, y)| \geqslant C_{9} \operatorname{dist}((x, y), \Gamma) .
$$

Then if $(x, y) \in \Omega \backslash V$ we have $|w(x, y)| \geqslant C_{10} / n$ and

$$
\begin{equation*}
\|P\|_{p, \Omega \backslash V} \leqslant C_{11} n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, \Omega \backslash V} \tag{14}
\end{equation*}
$$

Estimates (13) and (14) together give

$$
\|P\|_{p, \Omega} \leqslant C n^{\alpha}\left\|P|w|^{\alpha}\right\|_{p, \Omega}
$$

5. Sharpness of the Exponent

5.1. Some Lemmas

We need some preliminary estimates on Jacobi polynomials (see [8] for notation). The Jacobi polynomial $P_{n}^{(d, 0)}$ (whose degree is n) satisfies [8, pp. 168-169]

$$
\left\lvert\, \begin{array}{cl}
\left|P_{n}^{(d, 0)}(\cos \theta)\right| \leqslant n^{d} & \text { if } 0 \leqslant \theta \leqslant 1 / n \\
C n^{-1 / 2} \theta^{-d-1 / 2} & \text { if } 1 / n \leqslant \theta \leqslant \pi / 2 \\
1 & \text { if } \pi / 2 \leqslant \theta \leqslant \pi \tag{17}
\end{array}\right.
$$

Lemma 5. For $p>0, \alpha \geqslant 0$, and $d>\alpha+1 / p$, there exists a positive constant $C=C(p, \alpha)$ such that for any n

$$
\begin{equation*}
\left\|P_{n}^{(d, o)}\left(1-2 x^{2}\right)|x|^{\alpha}\right\|_{p,[-1,1]} \leqslant C n^{d-\alpha-1 / p} \tag{18}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \int_{-1}^{1}\left|P_{n}^{(d, 0)}\left(1-2 x^{2}\right)\right|^{p}|x|^{p x} d x \\
& \quad=2 \int_{0}^{1}\left|P_{n}^{(d, 0)}\left(1-2 x^{2}\right)\right|^{p}|x|^{p x} d x \\
& \quad=\int_{0}^{\pi}\left|P_{n}^{(d, 0)}(\cos \theta)\right|^{p}|\sin (\theta / 2)|^{p x}|\cos (\theta / 2)| d \theta .
\end{aligned}
$$

Using (15), (16), and (17) we obtain respectively

$$
\begin{gathered}
\int_{0}^{1 / n}\left|P_{n}^{(d, 0)}(\cos \theta)\right|^{p}|\sin (\theta / 2)|^{p x}|\cos (\theta / 2)| d \theta \\
\quad \leqslant \int_{0}^{1 / n} n^{d p}(\theta / 2)^{p \alpha} d \theta=C_{1} n^{d p-p x-1}
\end{gathered}
$$

$$
\begin{aligned}
& \int_{1 / n}^{\pi / 2}\left|P_{n}^{(d, 0)}(\cos \theta)\right|^{p}|\sin (\theta / 2)|^{p x}|\cos (\theta / 2)| d \theta \\
& \quad \leqslant C \int_{1 / n}^{\pi / 2}\left(n^{-1 / 2} \theta^{-d-1 / 2}\right)^{p} \theta^{p x} d \theta \leqslant C_{2} n^{d p-p x-1}, \\
& \int_{\pi / 2}^{\pi}\left|P_{n}^{(d, 0)}(\cos \theta)\right|^{p}|\sin (\theta / 2)|^{p x}|\cos (\theta / 2)| d \theta \leqslant C_{3} .
\end{aligned}
$$

These three estimates together give the required result.
Lemma 6. Let $p>0$ and $d>0$. There exists a positive constant $C=C(p, d)$ such that for any $n>0$ we have

$$
\int_{-1 / 4}^{1 / 4 n}\left|P_{n}^{(d, 0)}\left(1-2 x^{2}\right)\right|^{p} d x \geqslant C n^{d p-1}
$$

Proof. Let $Q(x)=P_{n}^{(d, 0)}\left(1-2 x^{2}\right)$ and $I=[-1,1]$. We have

$$
\|Q\|_{\infty, I}=Q(0)=P_{n}^{(d, 0)}(1)=n^{d} .
$$

By the Markov-Bernstein inequality, for any $x \in I$,

$$
\left|Q^{\prime}(x)\right| \leqslant 2 n\|Q\|_{\infty, I}\left(1-x^{2}\right)^{-1 / 2} .
$$

Then for $|x| \leqslant 1 /(4 n)$

$$
\left|Q(x)-\|Q\|_{\infty, \lambda}\right|=|Q(x)-Q(0)|=|x| Q^{\prime}(c)
$$

for some c between 0 and x. Thus

$$
\left|Q(x)-\|Q\|_{\infty, l}\right| \leqslant \frac{1}{4 n} 2 n\left(1-\frac{1}{16}\right)^{-1 / 2}\|Q\|_{\infty, I} \leqslant \frac{2}{3}\|Q\|_{\infty, I}
$$

and then for $|x| \leqslant 1 /(4 n),|Q(x)| \geqslant \frac{1}{3}\|Q\|_{\infty . I}=\frac{1}{3} n^{d}$; therefore

$$
\int_{-1 / 4 n}^{1 / 4 n}|Q(x)|^{p} d x \geqslant C n^{d p-1}
$$

Corollary 1. Let $p>0, d>1 / p$. There exists a positive constant $C=C(p)$ such that for any n we have

$$
\int_{I}\left|P_{n}^{(d, 0)}\left(1-2 x^{2}\right)\right|^{p} d x \leqslant C \int_{-1 / 4 n}^{1 / 4 n}\left|P_{n}^{(d, 0)}\left(1-2 x^{2}\right)\right|^{p} d x
$$

Proof. Using (18) with $\alpha=0$ we obtain

$$
\int_{I}\left|P_{n}^{(d, 0)}\left(1-2 x^{2}\right)\right|^{p} d x \leqslant C n^{d p-1}
$$

Then Corollary 1 is an immediate consequence of Lemma 6.

5.2. Proof of the Sharpness

Let $a \in \Omega \cap \Gamma$. We can assume that a is the origin and that $\Omega \subset[-1,1]^{2}=I^{2}$. Let N be such that $[-1 / N, 1 / N]^{2} \subset \Omega$.

In order to prove the sharpness of the exponent α, we exhibit a sequence $\left(R_{4 n}\right)_{n \in N}$ of polynomials of degree $4 n$ such that

$$
n^{\alpha}\left\|R_{4 n}|w(x, y)|^{\alpha}\right\|_{p, \Omega} \leqslant C\left\|R_{4 n}\right\|_{p, \Omega}
$$

By Taylor's formula, $w(x, y)=w(0,0)+x w_{x}^{\prime}(\lambda x, \lambda y)+y w_{y}^{\prime}(\lambda x, \lambda y)$ for some $\lambda \in[0,1]$. Since $w(0,0)=0$ we have

$$
|w(x, y)|^{\alpha p} \leqslant C_{1}\left(|x|^{\alpha p}+|y|^{\alpha p}\right) .
$$

We set $R_{4 n}(x, y)=Q(x) Q(y)$, where $Q(x)=P_{n}^{(d, 0)}\left(1-2 x^{2}\right)$ with $d>\alpha+1 / p$.
We have

$$
\begin{aligned}
& \int_{\Omega}\left|R_{4 n}(x, y)\right|^{p}|w(x, y)|^{\alpha p} d x d y \\
& \leqslant C_{1} \int_{\Omega}|x|^{\alpha p}|Q(x) Q(y)|^{p} d x d y \\
&+C_{1} \int_{\Omega}|y|^{\alpha p}|Q(x) Q(y)|^{p} d x d y \\
& \leqslant 2 C_{1} \int_{I}|x|^{\alpha p}|Q(x)|^{p} d x \int_{I}|Q(y)|^{p} d y \\
& \leqslant C_{2} n^{d p-p x-1+d p-1} \quad(\text { by Lemma } 5) \\
& \leqslant C_{3} n^{-p x} \int_{-1 / 4 n}^{1 / 4 n}\left|P_{n}^{(d, 0)}\left(1-2 x^{2}\right)\right|^{p} d x \int_{-1 / 4 n}^{1 / 4 n}\left|P_{n}^{(d, 0)}\left(1-2 y^{2}\right)\right|^{p} d y
\end{aligned}
$$

(by Lemma 6 and Corollary 1) and since $[-1 / 4 N, 1 / 4 N]^{2} \subset \Omega$

$$
\int_{\Omega}\left|R_{4 n}(x, y)\right|^{p}|w(x, y)|^{\alpha p} d x d y \leqslant C n^{-p \alpha} \int_{\Omega}\left|R_{4 n}(x, y)\right|^{p} d x d y
$$

which completes the proof.

References

1. P. Goetgheluck, Polynomial inequalities and Markov's inequality in weighted L^{p}-spaces, Acta Math. Acad. Sci. Hungar. 33 (1979), 325-331.
2. P. Goetgheluck, Une inégalité polynomiale en plusieurs variables, J. Approx. Theory 40 (1984), 161-172.
3. P. Goetgheluck, Markov's inequality on locally lipschitzian compact subsets of \mathbb{P}^{N} in L^{p}-spaces, J. Approx. Theory 49 (1987), 303-310.
4. P. Goetghelleck, Polynomial inequalities on general subsets of \mathbb{R}^{N}, Coll. Math. 57 (1989), 127-136.
5. P. Neval, Orthogonal polynomials, Mem. Amer. Math. Soc. 213 (1979).
6. P. Neval, Bernstein's inequality in L^{p} for $0 \leqslant p<1$, J. Approx. Theory 27 (1979), 239-243.
7. I. Schur, Über das maximum des absoluten Betrages eines Polynoms in einen gegebenen Interval, Math. Z. 4 (1919), 271-187.
8. G. Szegö, "Orthogonal polynomials," Amer. Math. Soc. Coll. Pub., Vol. 23, New York, 1959.
